Notizen / Notes

Übergangsmetall-Silyl-Komplexe, 34¹⁾

Ein zweikerniger Gold-Silyl-Komplex mit Gold – Gold-Wechselwirkung zwischen einer (R₃P)₂Au- und einer (R'₃Si)ClAu-Einheit

Jürgen Meyer, Hermann Piana, Herbert Wagner und Ulrich Schubert*

Institut für Anorganische Chemie der Universität Würzburg, Am Hubland, D-8700 Würzburg

Eingegangen am 6. November 1989

Key Words: Gold complex, dinuclear / Silyl complex / Gold-gold interaction

Transition-Metal Silyl Complexes, 34^{11} . – A Dinuclear Gold Silyl Complex with Gold–Gold Interaction Between an $(R_3P)_2Au$ and an $(R'_3Si)ClAu$ Unit

 $Ph_2MeP - Au - Cl reacts$ with $Ph_2MeP - Au - SiPh_3$ to form the dinuclear complex $(Ph_2MeP)_2Au_2(Cl)SiPh_3$, which is in equilibrium with its starting compounds. An X-ray structure analysis reveals that it consists of a $(Ph_2MeP)_2Au$ and a $(Ph_3Si)ClAu$

Wir haben vor einiger Zcit über die Synthese von Gold-Silyl-Komplexen $R_3P - Au - SiR'_3$ durch Umsetzung von $R_3P - Au - Cl$ mit LiSiR'_3 berichtet²⁾. Bei der ³¹P-NMR-spektroskopischen Verfolgung der Reaktion fiel auf, daß besonders bei langsamer Zugabe von LiSiR'_3 neben dem Signal des Chloro-Komplexes und dem des entstehenden Silyl-Komplexes ein weiteres Signal auftritt, das nach vollständiger Zugabe der stöchiometrischen Menge an LiSiR'_3 wieder verschwindet. Es ist uns jetzt gelungen, diese intermediär auftretende Verbindung gezielt zu synthetisieren und ihre Zusammensetzung und Struktur zu bestimmen.

Versetzt man eine Lösung von Ph₂MeP-Au-SiPh₃ (1) in Dichlormethan mit einer äquimolaren Menge Ph₂MeP-Au-Cl (2), so hellt sich die zunächst rote Farbe der Lösung innerhalb weniger Minuten auf. Das ³¹P-NMR-Spektrum des Reaktionsgemisches, das sich nach wenigen Minuten nicht mehr verändert, zeigt neben den Signalen der Edukte bei $\delta = 43.7$ (1) und 17.0 (2) ein etwa zehnfach intensiveres Signal bei $\delta = 28.9$, dessen Lage mit der des bei der Umsetzung von 2 mit LiSiPh₃ intermediär auftretendem Signals übereinstimmt. Versetzt man die Reaktionslösung mit Petrolether, so fällt bei -78 °C ein farbloser Niederschlag aus, der die analytische Zusammensetzung (Ph₂MeP)₂Au₂(Cl)SiPh₃ (3) hat (Gl. 1).

$$\frac{Ph_2MeP - Au - SiPh_3 + Ph_2MeP - Au - Cl \rightarrow (Ph_2MeP)_2Au_2(Cl)SiPh_3}{1} \quad (1)$$

Der Verdacht, cs könnte sich bei der ausgefallenen Verbindung 3 um ein 1:1-Gemisch von 1 und 2 handeln, wird nicht nur durch die Lage des neuen Signals im ³¹P-NMR-Spektrum entkräftet, sondern auch durch unterschiedliche Kopplungskonstanten J(PCH) im ¹H-NMR-Spektrum (1: 7.3, 2: 10.8, 3: 9.2 Hz). Löst man die isolierte Verbindung 3 wieder auf, so erhält man dasselbe ³¹P-NMR-Spektrum wie bei der Darstellungs-Reaktion, d. h. 3 steht in Lösung mit 1 und 2 im Gleichgewicht, wobei allerdings die Konzentration an 3 überwiegt. Die Bildung von 3 erklärt auch die von uns zuvor nicht verstandene Beobachtung, daß es bei der Synthese der Gold-Silyl-Komplexe schr wichtig ist, die Lösung von LiSiR'₃ sehr zügig unit, which are held together by Au - Au interaction [298.07(4) pm]. The approximately linear AuL_2 units are orthogonal to each other.

zur Lösung von $R_3P - Au - Cl$ zu geben²: Bei langsamerer Zugabe bildet sich durch Reaktion von $R_3P - Au - SiR'_3$ mit unumgesetztem Chloro-Komplex der Zweikern-Komplex 3, der zwar teilweise wieder in die beiden Ausgangs-Komponenten dissoziiert, aber auch direkt mit LiSiR'_3 zu noch unbekannten Verbindungen reagiert (die instabil sind und zerfallen), wodurch die Ausbeute an $R_3P - Au -$ SiR'_3 deutlich vermindert wird.

Die Spektren von 3 geben wenig Aufschluß über den Bau dieses Komplexes. Das Auftreten nur eines Signals im ³¹P-NMR-Spektrum könnte entweder auf zwei äquivalente Phosphan-Liganden oder auf einen raschen PR₃-Austausch zurückzuführen sein. Im Schwingungsspektrum von 3 im fernen Infrarot-Bereich könnte eine starke Bande bei 253 cm⁻¹ v(Au-Cl) und eine schwache Bande bei 348 cm⁻¹ v(Au-Si) zugeordnet werden. Beide wären dann aber gegenüber den Edukten [Ph₂MeP-Au-SiPh₂Tol: v(Au-Si) 386, v(Au-P) 324; 2: v(Au-Cl)/v(Au-P) 312/320 cm⁻¹] deutlich langwellig verschoben.

Der Bau des Zweikern-Komplexes 3 wurde durch eine Röntgenstruktur-Analyse aufgeklärt (Tab. 1 und 2, Abb. 1). Danach handelt es sich überraschenderweise um eine Verbindung, bei der beide Phosphan-Liganden an das eine Gold-Atom und Chloro- und Silyl-Ligand an das andere Gold-Atom koordiniert sind. Sowohl bei der

Tab. 1. Ausgewählte Abstände [pm] und Winkel [°] von 3

	and the second		
Au1 - Au2 Au1 - Cl Au1 - Si	298.07(4) 238.6(2) 229.1(2)	Au2 - P1 Au2 - P2	229.7(2) 229.6(2)
Au1-Au2-P1 Au1-Au2-P2 Au2-Au1-C1 Au2-Au1-Si Si-Au1-C1 P1-Au2-P2 Au1-Si-C10	95.68(5) 95.04(5) 77.17(5) 103.79(5) 177.96(8) 164.90(6) 114.2(2)	Au1-Si-C20 Au1-Si-C30 Au2-P1-C40 Au2-P1-C50 Au2-P1-C60 Au2-P2-C70 Au2-P2-C80	111.0(2) 113.4(3) 107.9(3) 118.7(3) 113.2(3) 108.7(3) 114.9(3)

Chem. Bcr. 123 (1990) 791-793 (CH Verlagsgesellschaft mbH, D-6940 Weinheim, 1990 0009-2940/90/0404-0791 \$ 02.50/0

Bildung von 3 als auch bei der Dissoziation in 1 und 2 muß also sowohl ein Phosphan-Ligand als auch der Chloro- oder Silyl-Ligand zwischen zwei Gold-Atomen ausgetauscht werden.

Abb. 1. Molekülstruktur von 3. Die Wasserstoffatome sind der besseren Übersichtlichkeit halber nicht gezeichnet

Formal besteht 3 aus einer L_2Au^+ -Einheit (L = PMePh₂) und einer X_2Au -Einheit (X = Cl, SiPh₃), die durch Au-Au-Wechselwirkung miteinander verknüpft sind. Interessanterweise ist der Au-Au-Abstand in 3 [298.07(4) pm] der gleiche wie in den gut untersuchten zweikernigen Gold-Komplexen, in denen zwei gleichartig substituierte Au(I)-Atome d¹⁰-d¹⁰-Wechselwirkungen eingehen³⁾. Die Ligand-Gold-Ligand-Achsen der beiden annähernd linear koordinierten Gold-Atome stehen ungefähr senkrecht aufeinander [Torsionswinkel Cl-Au1-Au2-P1 -81.94(8)°, Cl-Au1-Au2-P2 87.42(8)°]. Im Kristallgitter liegen diskrete Dimer-Einheiten vor; die Au-Au-Abstände zu Nachbar-Einheiten sind größer als 750 pm.

Aus gegeneinander um etwa 90° verdrehten linearen L_2Au^+ und X_2Au^- -Einheiten sind auch Pyridin- oder Tetrahydrothiophen-"Addukte" der Gold(I)-halogenide aufgebaut (L = Pyridin oder THT; X = Halogenid)^{4.5}, in denen allerdings nicht wie in 3 diskrete Zweikern-Einheiten, sondern Au₄- oder Au_∞-Ketten auftreten. Au-Berdem sind die Au – Au-Abstände meist deutlich länger (bis zu 356 pm) als in 3. Nur in "pyAuCl"^{4a)} [Au – Au 299.0(1) pm] und in "(THT)Aul"⁵ [Au – Au 296.7(2) und 298.0(2) pm] ist der Au–Au-Abstand ähnlich kurz.

In den Kristallgittern mancher neutraler Gold(I)-Komplexe L-Au-X (L = Neutral-Ligand, X = negativ geladener Ligand) ordnen sich die molekularen Einheiten ebenfalls in der Weise an, daß relativ kurze Au-Au-Kontakte auftreten und die Torsionswinkel L-Au-Au-L ca. 90° betragen^{3a)}. Für L = Phosphan wird eine derartige Packung der Komplexe gefunden, wenn die Phosphan-Liganden nicht zu sperrig sind: Bei Cl₃P-Au-Cl^{6a)} bilden sich Zickzack-Ketten von Gold-Atomen aus, Me₃P-Au-I^{6b)}, Ph₂-HP-Au-Br^{6c)} und 2,4,6-tBu₃C₆H₂H₂P-Au-Cl^{6d)} kristallisieren in Form diskreter Dimerer.

Einige strukturelle Details in 3 deuten darauf hin, daß die Bindungsverhältnisse komplexer sind als eine rein elektrostatisch bedingte Wechselwirkung zwischen einem L_2Au^+ -Kation und einem X_2Au^- -Anion. Im L_2Au^+ -Teil sind die beiden Phosphan-Liganden symmetrisch vom zweiten Gold-Atom weggebogen [Au1-Au2-P 95.68(5) und 95.04(5)°], was in Einklang mit einer Au-Au-Bindung ist. Dagegen ist die nahezu lineare Si-Au1-Cl-Achse [177.96(8)°] relativ zum Au1-Au2-Vektor gekippt, wodurch der Winkel Au2-Au1 – Cl stark verkleinert $[77.17(5)^{\circ}]$ und der Winkel Au2 – Au1 – Si [103.79(5)°] stark vergrößert wird. Dies könnte rein sterische Ursachen haben: Der sperrige SiPh3-Ligand an Au1 ist dadurch vom (R₃P)₂Au-Teil weiter entfernt. Möglicherweise ist das Kippen des Si-Au-Cl-Vektors aber auch ein Indiz für eine beginnende Wechselwirkung zwischen dem Chloro-Substituenten an Au1 und dem benachbarten Gold-Atom Au2. Darauf könnte der signifikant verlängerte Au1-Cl-Abstand von 238.6(2) pm hindeuten. In dppm(AuCl)₂⁷⁾ und dppe(AuCl)₂⁸⁾ ist diese Bindung z. B. 228.8(1) bzw. 231.4(5) pm lang, im AuCl₂-Teil der Struktur von PyAuCl 229(1) pm³⁾. Allerdings ist in 3 der Au2-Cl-Abstand mit 337.9(2) pm noch viel zu groß als daß man von einer Chloro-Brücke oder auch nur einem halbverbrückenden Chloro-Liganden sprechen könnte. Möglicherweise als Folge der Verlängerung (Schwächung?) der Au1-Cl-Bindung ist dic Au-Si-Bindung [229.1(2) pm] verkürzt. Da der anionische Komplex [Cl-Au-SiPh₃]⁻ nicht bekannt ist, muß sich der Vergleich auf Ph2MeP-Au-SiPh3 [Au-Si (235.4(4) pm]²⁾ stützen: Die Verkürzung in 3 erscheint aber ausgeprägter als man beim Austausch des PR₃-Liganden gegen Cl⁻ erwarten würde. Im (Ph₂MeP)₂Au-Teil von 3 sind die Au-P-Abstände [229.7 und 229.6(2) pm] vergleichbar mit denen in [(Ph₂- $MeP_{2}AuPF_{6}[231.6(4) pm]^{9}$.

Wir danken der Deutschen Forschungsgemeinschaft für die Unterstützung dieser Arbeit und der Degussa AG und Wacker-Chemie GmbH für Chemikalien-Spenden.

Experimenteller Teil

Alle Arbeiten wurden unter trockenem, Sauerstoff-freiem Stickstoff unter Verwendung getrockneter und mit Stickstoff gesättigter Lösungsmittel durchgeführt.

Darstellung von $(Ph_2MeP)_2Au_2(Cl)SiPh_3$ (3): Eine Lösung von 238 mg (0.36 mmol) 1²⁾ und 156 mg (0.36 mmol) 2¹⁰⁾ in 1.5 ml CH₂Cl₂ wird bei Raumtemp. 2 h gerührt. Nach wenigen min färbt sich die Lösung hellrot. Nach Zugabe von Petrolether fällt bei -78 °C ein hellrotes Pulver aus, das abgetrennt, mehrmals mit Pentan gewaschen und im Hochvak. getrocknet wird. Ausb. 205 mg (52%), Schmp. (DTA) 133 °C (Zers.). - ¹H-NMR (Varian T60, CH₂Cl₂): $\delta = 2.15$ [d, 6H, PCH₃; J(PCH) = 9.2 Hz], 7.15-7.90 (m, 35H, Ph). - ³¹P-NMR (Bruker WH90, 36.23 MHz, CH₂Cl₂/ CD₂Cl₂): $\delta = 28.9$.

Röntgenstrukturanalyse von 3: Kristalle (0.3 × 0.3 × 0.7 mm) wurden durch langsames Verdampfen des Lösungsmittels im Laufe mehrerer Monate bei -25° C aus CH₂Cl₂/Pentan erhalten. – Zellparameter: monoklin, a = 1325.8(6), b = 1391.3(3), c = 2251.8(7)pm, $\beta = 98.42(3)^{\circ}$, $V = 4109 \cdot 10^{6}$ pm³; Raumgruppe $P2_{1/c}$ (Z = 4), $d_{\text{ber.}} = 1.76$ g/cm³. – Datensammlung: Die Zellkonstanten wurden durch Verfeinerung von 25 Reflexen mit hohen Beugungswinkeln aus verschiedenen Bereichen des reziproken Raums bestimmt. Messung der Reflex-Intensitäten im Bereich $2^{\circ} \leq 2\Theta \leq 48^{\circ}$ erfolgte auf einem Enraf-Nonius-CAD4-Diffraktometer mit Mo- K_{α} -Strahlung ($\lambda = 71.069$ pm, Graphit-Monochromator) nach der $\omega/2\Theta$ -Scan-Methode. Nach Lorentz-, Polarisations- und einer empirischen Absorptions-Korrektur ($\mu = 73.2$ cm⁻¹) wurden 6164 unabhängige Strukturfaktoren erhalten. Transmission min. 46.0%, max. 100%. – Lösung der Struktur: Patterson-Methode. Die Lagen

Tab. 2. Atomparameter von 3

Atom	x	У	Z	Bequ
Aul	0.12945(2)	0.11167(2)	0.76094(1)	2.980(6)
Au2	0.28706(2)	0.11604(2)	0.86985(1)	2.903(6)
C1	0.2851(2)	0.1161(2)	0.7196(1)	4.87(5)
P1	0.3218(1)	-0.0457(1)	0.87020(8)	2.63(4)
Р2	0.2982(1)	0.2806(1)	0.87412(9)	2.78(4)
Si	-0.0216(2)	0.1126(2)	0.79896(9)	2.88(4)
C10	-0.0438(5)	0.0026(5)	0.8439(3)	2.8(2)
C11	-0.0410(6)	-0.0864(6)	0.8155(4)	4.4(2)
C12	-0.0588(7)	-0.1732(7)	0.8440(5)	5.6(2)
C13	-0.0795(7)	-0.1686(7)	0.9028(5)	5.8(2)
C14	-0.0830(8)	-0.0821(8)	0.9314(4)	5.5(2)
C15	-0.0671(6)	0.0030(6)	0.9024(4)	4.0(2)
C20	-0.0312(5)	0.2217(6)	0.8477(3)	2.9(2)
C21	0.0264(6)	0.2309(6)	0.9049(4)	3.6(2)
C22	0.0238(7)	0.3127(7)	0.9383(4)	4.4(2)
C23	-0.0327(7)	0.3930(7)	0.9138(4)	4.9(2)
C24	-0.0860(7)	0.3896(7)	0.8574(4)	5.0(2)
C25	-0.0866(6)	0.3014(6)	0.8237(4)	3.9(2)
C30	-0.1382(6)	0.1168(6)	0.7388(4)	3.4(2)
C31	-0.2351(6)	0.1060(7)	0.7547(4)	4.4(2)
C32	-0.3229(7)	0.1129(8)	0.7122(5)	5.4(2)
C33	-0.3128(8)	0.1310(7)	0.6543(5)	5.8(2)
C34	-0.2173(8)	0.1438(7)	0.6354(4)	5.4(2)
C35	-0.1330(7)	0.1353(6)	0.6793(4)	4.1(2)
C40	0.4556(5)	-0.0604(6)	0.8632(3)	2.9(2)
C41	0.4882(7)	-0.1289(8)	0.8257(4)	4.9(2)
C42	0.5901(8)	-0.140(1)	0.8190(5)	6.5(3)
C43	0.6624(8)	-0.0754(9)	0.8545(5)	6.2(3)
C44	0.6314(8)	-0.0128(8)	0.8929(6)	6.8(3)
C45	0.5247(7)	-0.0014(7)	0.8981(5)	5.2(2)
C50	0.3000(6)	-0.1161(5)	0.9342(3)	2.9(2)
C51	0.3741(7)	-0.1726(6)	0.9659(4)	4.1(2)
C52	0.3486(7)	-0.231/(/)	1.0133(4)	5.0(2)
C53	0.2534(8)	-0.2332(8)	1.0268(4)	5.0(2)
C54	0.1/66(7)	-0.1/54(7)	0.9942(4)	4.0(2)
C55	0.2008(6)	-0.1181(6)	0.9465(4)	3.7(2)
050	0.2519(6)	-0.1090(6)	0.0000(4)	3.3(2)
670	0.4259(0)	0.3103(0)	0.0010(4)	3.3(2)
671	0.48/9(0)	0.2000(0)	0.0302(4)	5 6/2)
C72	0.5059(7)	0.2039(9)	0.02/0(4)	5.0(2)
074	0.0103(7)	0.3752(9)	0.0350(5)	7 1 (3)
C75	0.3310(3)	0.4307(0)	0 8749(6)	6.0(3)
C / 5 C 8 0	0.4570(7)	0 3326(6)	0.9458(3)	3.2(2)
C81	0.2022(0)	0 2748(7)	0.9980(4)	4.4(2)
CB2	0.3030(7)	0.3158(9)	1.0531(4)	6.0(3)
CR3	0 2571/91	0.4056(8)	1.0585(5)	6.4(3)
C84	0 2328/91	0.4637(8)	1.0049(5)	6.3(3)
C85	0.2466(8)	0.4268(7)	0.9504(4)	4.8(2)
C90	0.2139(7)	0.3463(6)	0.8185(4)	3.8(2)

der Wasscrstoff-Atome wurden nach idealer Geometrie berechnet und nicht verfeinert. Alle übrigen Atome wurden mit anisotropen Temperaturparametern nach der Methode der kleinsten Quadrate mit der vollständigen Matrix verfeinert (Enraf-Nonius SDP). R = 0.035, $R_w = 0.035$ für 5368 Reflexe mit $F_o \ge 2.0 \sigma(F_o)$. $1/w = \sigma^2$. In Tab. 1 sind ausgewählte Abstände und Winkel, in Tab. 2 die Atomkoordinaten der Nicht-Wasserstoffatome wiedergegeben¹¹⁾.

CAS-Registry-Nummern

1: 116785-41-2 / 2: 38686-38-3 / 3: 125519-22-4

- ¹⁾ 33. Mitteilung: U. Schubert, Ch. Müller, J. Organomet. Chem. 373 (1989) 165.
- ²⁾ J. Meyer, J. Willnecker, U. Schubert, *Chem. Ber.* **122** (1989) 223. ³⁾ ^{3a)} P. G. Jones, *Gold Bull.* **14** (1981) 102; **16** (1983) 114. ^{3b)} H. Schmidbaur, K. Dziwok, A. Grohmann, G. Müller, *Chem. Ber.*
- ⁴⁾ ⁴³ H.-N. Adams, W. Hiller, J. Strähle, Z. Anorg. Allg. Chem. 485 (1982) 81. ^{4b} W. Conzelmann, W. Hiller, H. Strähle, Z. Anorg. Allg. Chem. 512 (1984) 169.
- Aug. Chem. 512 (1964) 109. ⁵⁾ S. Ahrland, B. Norén, A. Oskarsson, Inorg. Chem. 24 (1985) 1330. ⁶⁾ ^{6a)} G. J. Arai, Recl. Trav. Chim. Pays-Bas 81 (1962) 307. ^{6b)} S. Ahrland, K. Dreisch, B. Norén. A. Oskarsson, Acta Chem. Scand., Ser. A, 41 (1987) 173. ^{6c)} D. B. Dyson, R. V. Parish C. A. McAuliff, P. C. Dritchard, P. Fielde, B. Beagley, J. Chem. C. A. McAuliffe, R. G. Pritchard, R. Fields, B. Beagley, J. Chem. Soc., Dalton Trans. 1989, 907. - ^{6d} H. Schmidbaur, persönliche Mitteilung.
- ⁷⁾ H. Schmidbaur, A. Wohlleben, F. Wagner, O. Orama, G. Huttner, Chem. Ber. 110 (1977) 1748.
- ⁸⁾ P. A. Bates, J. M. Waters, *Inorg. Chim. Acta* **98** (1985) 125. ⁹⁾ J. H. Guy, P. G. Jones, G. M. Sheldrick, *Acta Crystallogr., Sect.*
- B, 32 (1976) 1937.
 ¹⁰ C. A. McAuliffe, R. V. Parish, P. D. Randell, J. Chem. Soc., Dalton Trans. 1979, 1730.
- ¹¹⁾ Weitere Einzelheiten zur Kristallstrukturbestimmung können beim Fachinformationszentrum Karlsruhe, Gesellschaft für wissenschaftlich-technische Information mbH, D-7514 Eggenstein-Leopoldshafen 2, unter Angabe der Hinterlegungsnummer CSD-54176, der Autorennamen und des Zeitschriftenzitats angefordert werden.

[365/89]